Umbilical cord patch could be used for fetal spina bifida repair



A patch made from cryopreserved human umbilical cord may be a novel method for treating spina bifida in utero, according to researchers at McGovern Medical School at The University of Texas Health Science Center in Houston (USA). The findings were published in Obstetrics & Gynecology.

A patch comprised of the donated outer layer of the umbilical cord from healthy new-borns was used for the repairs. The surgeries were performed at Children’s Memorial Hermann Hospital (Houston, USA).

“The promise of this patch is that the umbilical cord contains specific natural material called heavy chain hyaluronic acid/pentraxin3 that has regenerative properties,” says Ramesha Papanna, lead author, assistant professor in the Department of Obstetrics, Gynecology and Reproductive Sciences at McGovern Medical School and maternal-foetal medicine specialist at The Fetal Center at Children’s Memorial Hermann Hospital. “It allows the local tissue to grow in at the repair site instead of a healing by scar formation that occurs with traditional repair methods. This decrease in scar formation may help improve the spinal cord function further and reduce the need for future surgeries to remove the effects of the scar tissue on the spinal cord.”

In 2011, a landmark clinical trial sponsored by the National Institutes of Health found that if a foetus underwent in utero surgery to close the defect, the serious complications associated with spina bifida could be reversed or lessened. In cases where the defect was too large to close with the fetus’ existing skin, a patch was necessary. But in some cases, scar tissue may cause adherence of the patch to the underlying spinal cord. This could result in a loss of neurologic function as the child ages. Further surgery was often needed to remove this scar tissue.

“The use of this patch for foetal repair heralds a new era for foetal spina bifida repair,” says Kenneth Moise, co-author, professor, director of the Fetal Intervention Fellowship Program at McGovern Medical School and co-director of The Fetal Center. “For the first time, a bioscaffold has been successfully employed to allow the foetus to heal itself. The implications for the future of a minimally invasive approach to foetal spina bifida repair and even neonatal spina bifida repair are enormous.”

In the first case study, the skin lesion in the foetus measured 5 cm x 6cm, and there was evidence of Chiari II malformation.

At 24 weeks gestation, the patient underwent foetal surgery by KuoJen Tsao, associate professor and The Children’s Fund Distinguished Professor in Pediatric Surgery and co-director of The Fetal Center, and Stephen Fletcher, co-author, associate professor in McGovern Medical School’s Department of Pediatric Surgery, and paediatric neurosurgeon affiliated with Memorial Hermann Mischer Neuroscience Institute at the Texas Medical Center and Children’s Memorial Hermann Hospital. Moise and Papanna participated in the surgery.

The lesion was closed with skin edges sutured to the human umbilical cord patch in a watertight fashion. The mother was discharged on postoperative day five. The baby was born at 37.5 weeks and the patch was intact with no leakage of fluid. The patch at the site of the lesion appeared semi-translucent with incomplete regeneration of the skin. Within two weeks, the skin had healed over the patch spontaneously. The child had normal movements of the lower extremities and bladder control function and there was a complete reversal of the Chiari II malformation.

In the second case, performed by the same team, the patient’s foetus had a lesion of 4cm x 5cm and Chiari II malformation. The expectant mother underwent surgery at 25 weeks gestation and the procedure and application of the patch were similar to the first case. The baby was delivered at 37 1/2 weeks, and there was complete covering of the lesion with the patch but without skin grown into the patch. As with the first case, the skin grew over the patch and, by day 30, was completely healed. There was normal motor and urinary function, and the Chiari II malformation was completely reversed.

Both cases were approved by the US Food and Drug Administration under Expanded Access use, the Fetal Therapy Board of The Fetal Center at Children’s Memorial Hermann Hospital and UTHealth Institutional Review Board prior to the surgery.

The clinical cases were the culmination of seven years of research after Papanna, and co-author Lovepreet K Mann, instructor in McGovern Medical School’s Department of Obstetrics, Gynecology and Reproductive Sciences, began brainstorming ideas about possible patch materials. This led them to co-author Scheffer CG Tseng, of Ocular Surface Center and TissueTech, in Miami, USA, who was using human amniotic membrane and umbilical cord—donated by mothers of healthy infants—to repair corneas. The patch is approved by the FDA for corneal repair.

“This patch acts as a scaffold, which is watertight and allows native tissue to regenerate in an organised manner, and has anti-scarring, anti-inflammatory properties. Preventing the scarring could prevent tethering, which can prevent further damage to the cord,” Mann says.

The patch was first tested in animal models by a team of researchers that included Papanna, Mann, Moise, Fletcher and Saul Snowise, a maternal-foetal fellow who has now joined McGovern Medical School as an assistant professor in the Department of Obstetrics, Gynecology and Reproductive Sciences.

In 2011, after the landmark national trial for foetal surgery was ended early because of positive results, physicians at McGovern Medical School and The Fetal Center were the first in Texas to perform the newly approved surgery. Since then the team has performed more than 30 foetal surgeries to treat spina bifida.

Mann said the team was taken aback at first by the lack of skin covering the patch at the birth of the first infant but she could see the child’s legs moving and knew it was an early success that they hope will continue as the baby grows. “It would mean a lot to the team if we can make a small change and improve the quality of life for the child. That will mean we really did something,” she said.

The team has since completed a third surgery and Fletcher has used the new patch in surgeries to untether the spinal cord of children who had previous spina bifida surgery. They wait now to see if the umbilical cord patch will help prevent tethering in the long run.

Currently, the team members are working on finding ways to make the skin heal inside the uterus and different ways to deploy the patch over the defect site through less-invasive ways.