Brain capillaries trigger spinal motor neurons to develop

2238
Credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute Layers of spinal motor neuron cells (top, in blue) and capillary cells (bottom, in red) converge inside an Organ-Chip. Neurons and capillary cells interact together along the length of the chip. The image was produced using a confocal microscope; colours were generated by staining with fluorescent antibodies.

A new study, published in the journal Stem Cell Reports, has revealed that the human brain’s tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into how amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders may develop.

Investigators successfully re-created living tissues of the blood vessels and the spinal motor neurons—which control muscles—outside the body to show how they interact.

Samuel Sances (Cedars-Sinai Board of Governors Regenerative Medicine Institute), first author of the study, comments, “Until now, people thought these blood vessels just delivered nutrients and oxygen, removed waste and adjusted blood flow. We showed that beyond plumbing, they are genetically communicating with the neurons.”

When a human embryo is about four weeks old, new blood vessels begin to surround a primitive column of cells that eventually will become the spinal cord. Driven by developmental genes, some of these cells turn into spinal motor neurons. The study showed the cells of the brain’s smallest blood vessels, the capillaries, are capable of activating these genes, which can spur spinal motor neurons to grow and mature.

Besides providing insights into human biology, the study opened a new pathway to unraveling the mysteries of disorders such as ALS, or Lou Gehrig’s disease, Sances says. ALS is a progressive, fatal disorder that kills motor neurons. There is no known cure. More than 6,000 people in the USA are diagnosed with the disorder each year, according to the ALS Association.

“What may go wrong in the spinal neurons that causes the motor neurons to die?” Sances asks. “If we can model an individual ALS patient’s tissues, we may be able to answer that question and one day rescue ALS patients’ neurons through new therapies.”

The study findings were made possible by a pairing of stem cell science with Organs-on-Chips technology, which re-creates human biology in micro-engineered environments.

Cedars-Sinai investigators first took samples of skin cells from adults and genetically reprogramed them into induced pluripotent stem cells, which can create any type of cell—in this case, spinal motor neurons and the lining of the brain’s capillaries. The team placed these cells in the tiny channels of Organ-Chips, which are made of flexible polymer and are about the size of AA batteries. In the chips, nurtured by special fluids, the cells of the two different tissues thrived and interacted with each other.

Clive Svendsen (Medicine and Biomedical Sciences, Cedars-Sinai Board of Governors Regenerative Medicine Institute), senior author of the study, explains, “This study told us something important about how our neurons develop. As a next step, he adds, investigators are developing plans to use chip technology to compare the vessel-neuron interactions in ALS patients against those of individuals without ALS.

The research is part of the new Patient-on-a-Chip program, a collaboration between Cedars-Sinai and Emulate in Boston to help predict which disease treatments would be most effective based on a patient’s genetic makeup and disease variant. Emulate produces the Organ-Chips used in the program. Geraldine A. Hamilton, president and chief scientific officer at Emulate, is a co-author of the spinal motor neuron study.

In February, investigators from the two organisations announced they had used an Intestine-Chip to model a human intestinal lining.

Disclosure: Cedars-Sinai owns a minority stock interest in Emulate. An officer of Cedars-Sinai also serves on Emulate’s board of directors. Emulate provides no financial support for this research.


LEAVE A REPLY

Please enter your comment!
Please enter your name here